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Abstract

Background: Many technological, biological, social, and information networks fall into the broad class of ‘small-world’
networks: they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched
random graph (same number of nodes and edges). This semi-quantitative definition leads to a categorical distinction
(‘small/not-small’) rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network’s
small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical
network model – the Watts-Strogatz (WS) model. However, the process of establishing an equivalent WS model is imprecise
and there is a pressing need to discover ways in which this equivalence may be quantified.

Methodology/Principal Findings: We defined a precise measure of ‘small-world-ness’ S based on the trade off between
high local clustering and short path length. A network is now deemed a ‘small-world’ if S.1 - an assertion which may be
tested statistically. We then examined the behavior of S on a large data-set of real-world systems. We found that all these
systems were linked by a linear relationship between their S values and the network size n. Moreover, we show a method for
assigning a unique Watts-Strogatz (WS) model to any real-world network, and show analytically that the WS models
associated with our sample of networks also show linearity between S and n. Linearity between S and n is not, however,
inevitable, and neither is S maximal for an arbitrary network of given size. Linearity may, however, be explained by a
common limiting growth process.

Conclusions/Significance: We have shown how the notion of a small-world network may be quantified. Several key
properties of the metric are described and the use of WS canonical models is placed on a more secure footing.
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Introduction

Networks are widely used to both represent real-world systems

for topological study [1] and as a substrate for modeling their

dynamics [2]. Many real technological, biological, social, and

information networks fall into the broad class of ‘small-world’

networks [3], a middle ground between regular and random

networks: they have high local clustering of elements, like regular

networks, but also short path lengths between elements, like

random networks. Membership of the ‘small-world’ network class

also implies that the corresponding systems have dynamic

properties different from those of equivalent random or regular

networks [3–7].

One popular method for studying small-world networks is to use

an equivalent network model to generate other similar instances of

the class of systems under study. Such generating models may also

possess analytic properties that, we assume, may be extrapolated to

the target system. One canonical model used as a candidate for

network equivalence is the original Watts-Strogatz (WS) model,

which has been used as a substrate for studying dynamics in the

diverse fields of ecology [8], economics [9,10], epidemiology

[11,12], and neuroscience [13].

However, the existing ‘small-world’ definition is a categorical

one, and breaks the continuum of network topologies into the

three classes of regular, random, and small-world networks, with

the latter being the broadest. It is unclear to what extent the real-

world systems in the small-world class have common network

properties and to what specific point in the ‘‘middle-ground’’

(between random and regular) a network generating model must

be tuned to genuinely capture the topology of such systems. Here

we explore a continuous, quantitative, measure of ‘small-world-

ness’, with the aim of overcoming these inadequacies in the

current theory of small-world networks.

Network formalism
When describing a real-world system as a network, each

element of the system is represented by a vertex or node, and

relationships or interactions between elements are represented by

edges between nodes. Two nodes are said to be neighbors if they

are connected by an edge, and the degree ki of node i is the number

of neighbors it has. The minimum path length between two nodes is

the minimum number of edges that must be traversed to get from

one node to the other. The mean value of the minimum path

length over all node pairs will be denoted by L.
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A key concept in defining small-worlds networks is that of

‘clustering’ which measures the extent to which the neighbors of a

node are also interconnected. Watts and Strogatz [3] defined the

clustering coefficient cws
i of node i by

cws
i ~

2Ei

ki ki{1ð Þ ð1Þ

where Ei is the number of edges between the neighbors of i. The

clustering coefficient of the network Cws is then the mean of cws
i

over all nodes. An alternative definition of network clustering in

common use [14], based on transitivity, is expressed by

CD~
3|number of triangles

number of paths of length 2
, ð2Þ

where a ‘triangle’ is a set of three nodes in which each contacts the

other two. Both capture intuitive notions of clustering but, though

often in good agreement, values for Cws and CD can differ by an

order of magnitude for some networks. We consider mainly CD

here, but report where using Cws leads to different results.

A network G with n nodes and m edges is a small-world network

[3] if it has a similar path length but greater clustering of nodes

than an equivalent Erdös-Rényi (E–R) random graph [15] with

the same m and n (an E–R graph is constructed by uniquely

assigning each edge to a node pair with uniform probability). More

formally, let Lg be the mean shortest path length of G and CD
g its

clustering coefficient using (2). Let Lrand and CD
rand be the

corresponding quantities for the corresponding E–R random

graph. These ideas may be used to supply a semi-quantitative

categorical definition of a small world network [3]

Definition 1. The network G is said to be a small-world

network if Lg$Lrand and CD
g &CD

rand .

Here a similar definition applies if we use (1) to define clustering

coefficients.

New measures of small-world-ness
Put

cDg ~
CD

g

CD
rand

ð3Þ

and

lg~
Lg

Lrand

ð4Þ

We then define a quantitative metric of ‘small-world-ness’ SD

according to

SD~
cDg
lg

ð5Þ

In a similar way, putting

cws
g ~

Cws
g

Cws
rand

ð6Þ

we define Sws

Sws~
cws

g

lg

ð7Þ

The categorical definition of small-world network above implies

lg$1 and cDg&1, which, in turn, gives SD.1. We can, therefore,

now make a quantitative categorical definition of a ‘small-world’

network

Definition 2. A network is said to be a small-world network if

SD.1

A similar definition may also be given with respect to Sws.

However, notwithstanding the new categorical definition, we

wish to emphasize here the utility of using a continuously graded

notion of small-world-ness. We go on, therefore, to analyze the

properties of the new metrics, and apply them to real-world data

for the first time (in [16] we originally proposed this metric as a

tool for comparing theoretical neuroanatomy models; its subse-

quent adoption by others [17,18,19] motivated us to consider its

theoretical and empirical applications as a universal metric).

Results

New metrics behave as required with the Watts-Strogatz
model

We first checked that the metric SD behaves as required on the

canonical Watts-Strogatz (WS) model of small-world generation

[3]. The WS model begins with a ring of n nodes, each node

connected to its nearest neighbors out to some range K. Each edge

in turn is ‘re-wired’ to a new target node with probability p

(Figure 1A). Values of p = 0 and p = 1 give regular and random

networks, respectively, with intermediate p values resulting in

‘small-world’ networks that share properties of both provided that

the network is connected and sparse — densely connected

networks trivially have small mean path lengths and high

clustering coefficients.

Figure 1 shows that small-world-ness captures the topology

changes: it has a unique maximum at intermediate values of the

re-wiring parameter p, indicating the maximum trade-off between

high clustering and low path length (Figure 1B), and decays with

increasing edge density for a fixed size of network, reflecting the

requirement of sparseness (Figure 1C). We can see why this occurs

for increasing density. The edge density of a network is given by

j~
2m

n n{1ð Þ : ð8Þ

As jR1 then both Cws, CDR1 and LR1 because all nodes

become connected; and as this would apply for both a given real-

world network and its E-R random graph equivalent, so SD,

SwsR1 regardless of n: high edge density results in low small-

world-ness.

Small-world-ness scales linearly with n for real networks
We computed SD and Sws for a broad range of technological,

biological, social, and information networks (33 networks in total;

Table 1, see Materials and Methods). To our surprise, we found

that both forms of small-world-ness scale linearly with the size of

the network across all systems falling into the small-world class

(Figure 2A,B), irrespective of their originating domain or their

other topological properties (e.g. their degree distribution, degree

correlation). For SD, it was not possible to find or calculate CD (and

hence SD) for 6 of the 33 networks. However, for the remaining 27,

all had SD.1 and were therefore deemed to be small-world in the

new scheme (Definition 2). To ensure the robustness of the

categorization, networks with borderline values 1#SD#3 were

tested for significance using Monte Carlo sampling of 1000

Network ‘Small-World-Ness’
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equivalent E–R random graphs for each network, estimating 99%

confidence intervals using standard methods (see Materials and

Methods). All such networks had small-world-ness scores signifi-

cantly greater than an equivalent E–R random graph. For the 27

networks for which SD.1, linear regression on log-transformed

quantities (see Materials and Methods) allowed an estimate of the

best power law fit: SD = 0.023n0.96 (r2 = 0.78; p = 361029). This is

an essentially linear scaling of SD with n.

For Sws, 3 networks in our data-set were not small-worlds:

relationships amongst students [20] Sws = 0.27 (network #9); a

freshwater food web [21,1] Sws = 0.74 (network #28); and the E-

Coli reaction graph [22] Sws = 0.67 (network #32). This

demonstrates both that the small-world property is not robustly

achieved for small networks, and that it is contingent on the

particular measure of clustering used. Once again, networks with

borderline values 1#Sws#3 were tested using Monte Carlo

methods for significant membership of the small-world category

and were found to satisfy this criterion. For the 30 networks with

Sws.1, a similar regression to that used for SD gave

Sws = 0.012n1.11 (r2 = 0.84; p = 1.3610211). Thus, there is also a

robust linear scaling of Sws with n (see Text S1 for further details).

Linear scaling on the Watts-Strogatz model
Linear scaling of small-world-ness with network size was

unexpectedly shown by the canonical Watts-Strogatz model [3]

of small-world network generation. We now show that this result

can be explained analytically. In what follows, many of the

relationships are held only approximately, but because these

approximations are often very good we show them as equalities.

Note that from here on we use subscript names to identify analytic

quantities that pertain to a particular network model only.

If Lws is the mean shortest path length in the WS model, then it

is known [14] that

Lws~
n

K
f nKpð Þ, where f xð Þ~ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2z2x
p tanh{1

ffiffiffiffiffiffiffiffiffiffi
x

xz2

r
ð9Þ

Similarly, it is known for E-R random graphs [23] that

Lrand~
ln nð Þ

ln SkTð Þ ð10Þ

where Ækæ is the expected value of the degree across the network. In

the WS model, node degree and range are related by Ækæ = 2K, so that

Lrand~
ln nð Þ

ln 2Kð Þ ð11Þ

Using (11), (9) and (4) the path length ratio lws for the WS model is

lws~
nln 2Kð Þf nKpð Þ

K ln nð Þ ð12Þ

Figure 1. Small-world-ness S behaves as required on the Watts-Strogatz (WS) [3] model of small-world networks. A The WS model
begins with a ring of n nodes, each node connected to its nearest neighbors out to some range K (here K = 3). Each edge in turn is re-wired to a new
target node with probability p. B The WS model shows that p = 0 gives a regular network, with high clustering but high path length; p = 1 gives a
pseudo-random network, with low clustering and path length; and intermediate p values give small-world networks with high clustering and low
path lengths. The S metric tracks these changes precisely, and shows which unique p value corresponds to high clustering and low path length.
Normalized L (,); normalized C (#); normalized S (N). C The small-world property only applies to sparse networks: densely connected networks
trivially have high clustering and short path lengths. With increasing edge density j on the WS model, the S metric indicates the absence of
meaningful small-world structure. A particular edge density for the WS model is obtained by setting K = [j(n21)/2]. All numerical results obtained on
graphs with n = 1000, each data-point an average over 20 realizations for each p (with K = 10) or j (with p = 0.1) value.
doi:10.1371/journal.pone.0002051.g001
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The function f(x) in (9) has an upper asymptote of ln(2x)/4x if

nKp&1. Thus, assuming nKp&1, (12) becomes

lws~
ln 2nKpð Þln 2Kð Þ

4K2pln nð Þ ð13Þ

If CD
ws is the clustering coefficient of the WS model (using (2) as the

metric), then it is known [24] that

CD
ws~

3 K{1ð Þ
2 2K{1ð Þ 1{pð Þ3 ð14Þ

For E–R random graphs [23], to a good approximation,

CD
rand~SkT=n, so that using Ækæ = 2K

CD
rand~

2K

n
ð15Þ

Therefore, using, (14), (15) and (3)

cDws~
3 K{1ð Þ

4K 2K{1ð Þ 1{pð Þ3n ð16Þ

From (5), (16) and (13),

SD
ws~h K,pð Þ ln nð Þ

ln 2Kpð Þzln nð Þ

� �
n ð17Þ

Table 1. Table of small-world-ness values and other topological properties of real networks.

class # network n m Ækæ j L C
D Cws SD Sws p (WS) Reference

Social 1 Dolphins{ 62 159 5.13 0.084 3.36 0.31 0.26 2.8 2.35 0.64 [41]

2 film actors 449913 25516482 113.43 2.561024 3.48 0.2 0.78 627 2446 0.95 [1,3]

3 company directors 7673 55392 14.44 0.002 4.6 0.59 0.88 228 341 0.77 [1,23]

4 math coauthorship 253339 496489 3.92 1.661025 7.57 0.15 0.34 11666 26443 0.7 [1,45]

5 physics coauthorship 52909 245300 9.27 1.861024 6.19 0.45 0.56 2026 2521 0.73 [1,46]

6 biology coauthorship 1520251 11803064 15.53 161025 4.92 0.088 0.6 9089 61967 0.88 [1,46]

7 email messages 59912 86300 1.44 4.861025 4.95 - 0.16 - 40524 n/a [1,47]

8 email address books 16881 57029 3.38 461024 5.22 0.17 0.13 1301 995 0.64 [1,48]

9 student relationships 573 477 1.67 0.0029 16.01 0.005 0.001 1.34 0.27 n/a [1,20]

10 newspaper article co-
occurence

459 1422 6.2 0.0135 2.98 - 0.02 - 1.67 n/a [49]

11 US directors 11057 74414 13.46 0.0012 5.19 0.56 0.87 315 494 0.77 [50]

12 UK directors 8850 39741 8.98 0.001 6.46 0.61 0.89 386 561 0.71 [50]

13 German directors 4185 30438 14.55 0.0035 6.4 0.72 0.93 100.71 129.7 0.79 [50]

Information 14 WWW nd.edu 269504 1497135 5.56 461025 11.27 0.11 0.29 3453 9104 0.81 [1,51]

15 Roget’s Thesaurus 1022 5103 4.99 0.0098 4.87 0.13 0.15 23.54 27.17 0.76 [1,52]

16 word adjacency{ 112 425 7.59 0.0684 2.54 0.16 0.17 2.13 2.34 0.74 [26]

17 book purchases{ 105 441 8.4 0.081 3.08 0.35 0.49 3.09 4.33 0.71 V.Kreb,
unpublished
(www.orgnet.
com)

Technological 18 Internet 10697 31992 5.98 5.661024 3.31 0.035 0.39 98.09 1093 0.83 [1,53]

19 power grid 4941 6594 2.67 5.461024 18.99 0.1 0.08 84.45 67.56 0.8 [1,3]

20 train routes 587 19603 66.79 0.114 2.16 - 0.69 - 4.26 n/a [1,54]

21 software packages 1439 1723 1.2 0.0017 2.42 0.07 0.082 1403 1644 n/a [1,25]

22 software classes 1377 2213 1.61 0.0023 1.51 0.033 0.012 285.26 103.73 n/a [1,55]

23 electronic circuits 24097 53248 4.42 1.861024 11.05 0.01 0.03 33.5 100.5 0.91 [1,56]

24 peer-to-peer network 880 1296 2.95 0.0034 4.28 0.012 0.011 5.26 4.82 0.85 [1,57]

Biological 25 metabolic network 765 3686 9.65 0.0126 2.56 0.09 0.67 8.18 60.89 0.82 [1,58]

26 yeast protein interactions 2115 2240 0.001 2.12 6.8 0.072 0.071 107.85 106.35 0.73 [1,59]

27 marine food web 135 598 4.43 0.0661 2.05 0.16 0.23 7.84 11.27 0.64 [1,60]

28 freshwater food web 92 997 10.84 0.2382 1.9 0.2 0.087 1.7 0.74 0.74 [1,21]

29 C.Elegans{ 277 1918 13.85 0.05 2.64 0.2 0.28 3.21 4.51 0.81 [42]

30 Macaque cortex{ 95 1522 32.04 0.34 1.78 0.7 0.77 1.53 1.69 0.79 [42]

31 E. Coli substrate 282 1036 7.35 0.0261 2.9 - 0.59 - 22.08 n/a [22]

32 E. Coli reaction 315 8915 56.6 0.18 2.62 - 0.22 - 0.67 n/a [22]

33 functional cortical
connectivity

90 405 9 0.1 2.49 - 0.53 - 4.32 n/a [17]

Entries ‘-’ indicate missing data; n/a indicates values that could not be computed. All SD,Sws, edge density j and implied p(WS) were computed by us; for networks
marked { we have computed some or all of Ækæ, L, CD and Cws from available data-sets. References are given for the source of the original network data, and also for the
analyses where these were done separately.
doi:10.1371/journal.pone.0002051.t001
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where h(K, p) is a function of K and p only. The term in the square

brackets tends to 1 as nR‘ and so, for large enough n, SD for the WS

model scales with n. To quantify this approximation, we performed a

linear regression on log-transformed quantities (just as for the real

networks) over the typical range of n encountered in our sample of

networks, 102#n#107, and found a linear fit, with r2 within 1025 of

unity.

Establishing the precise WS model correlate of a real
network

The WS network is often used as a generative model for real

small-world networks [e.g. 8–13]. This is assumed to establish a ‘first-

pass’ model of that system’s topology, which may be augmented by

considering other factors such as degree sequence [23], degree

correlation [25], modularity [26] and other properties.

In matching the WS parameters K, p, n to the target system, we

know n, can measure Ækæ (giving K = Ækæ/2), but estimating p has,

hitherto, remained problematic. However, using our new metric of

small-world-ness, it is possible to establish p in a principled way.

Thus, if G is a real (target) network with measured small-world-

ness SD
g , we identify it with the WS network with the same value of

SD. That is, form e K ,p,nð Þ~SD
ws K ,p,nð Þ{SD

g , where SD
ws K ,p,nð Þ is

given by the right hand side of (17), and minimise e with respect to

p, keeping K, n at their measured values. We did this for our

sample of real-world systems, omitting those for which Ækæ#2 since

the expressions used in defining SD
ws are inaccurate in these cases

(we used Matlab routine fzero, initial value of p = 0.5). The

resulting p values for the equivalent WS model are listed in Table 1

Given that the real-world networks showed SD/n, the WS

networks derived from them under the procedure described here

must do likewise (they have identical SD values). However, the

result in the previous section would suggest that this implies K, p

are roughly constant for this set of WS networks.

To investigate the constancy of K we used the result that

Ækæ = 2m/n (where m is the number of edges in the network). So,

using K = Ækæ/2, constant K is equivalent to establishing m/n.

Figure 2C shows the result of regressing m against n (using log-

transformed quantities) for the real world networks. For networks

with SD.1, the best fit model was m = 2.46n1.06 (27 networks,

r2 = 0.92, p = 4610215), implying a mean node degree of Ækæ = 2m/

n<5; for networks with Sws.1, the best fit model was m = 3.16n1.03

(30 networks, r2 = 0.91, p = 2610215) implying Ækæ<6.32. Thus, the

real-world networks fulfill the prediction of constant mean node

degree. A similar result holds for p values; we found that all

testable real-world systems fall into a very limited range of p for the

equivalent WS model (0.64#p#0.95 and sp = 0.0806).

An alternative view of these results is as follows. We could start

with the empirically observed approximate constancy of mean

node degree Ækæ and calculated rewiring parameter p for the real

world networks, and deduce a linear scaling of SD for the WS

models. Then, under the equivalence of SD for both real-world

networks and their WS counterparts, we could have predicted that

SD for the real-world networks would also scale linearly.

The linear scaling of small-world-ness with n is not
inevitable

Is the relationship S/n inevitable for all systems? (The

subsequent argument holds for S based on either definition of

clustering coefficient and so superscripts D, ws are dropped). To

investigate this we note that it is always possible to write Si = aini

for the ith system, for some value ai; in the case of linear scaling, ai

is constant. To proceed further, we now express ai in terms of

other system parameters. Using the definition of S and (10) for

random graphs,

Si~
CiLrand

LiCrand

~
Ci

Li

nilnni

SkTilnSkTi

ð18Þ

where Ci, Li, Ækæi are the clustering coefficient, mean shortest path

length, and mean node degree of system i respectively. While we

do not know exactly how Li depends on n, we note that the mean

shortest path length for small-world networks is usually assumed to

scale logarithmically like random graphs: from (11), Lrand = [1/

ln(Ækæ)]ln(n); and for the WS model, using (9) with large n, Lws = (1/

4K2p)ln(n). Both relations are of the form L =bln(n) where b is

Figure 2. Correlation of real-world network properties. A Small-world-ness SD scales linearly with network size n across real networks from all
domains, and irrespective of their other properties. We show SD for all 27 networks for which CD could be found or calculated; result was
SD = 0.023n0.96 (r2 = 0.78; p = 361029). The dashed line is the theoretical maximum small-world-ness value of SD = 0.181n (see text), given the implied
mean degree of Ækæ<5 (see below). B Similarly, using known or calculated Cws, we found Sws = 0.012n1.11 (30 networks with Sws.1; r2 = 0.84;
p = 1.3610211). C Number of edges m also scales linearly with network size n — CD data-set shown. Best-fit model was m = 2.46n1.06 (27 networks,
r2 = 0.92, p = 4610215), implying a mean node degree of Ækæ = 2m/n<5. For the Cws data-set, we found m = 3.16n1.03 (30 networks, r2 = 0.91,
p = 2610215) implying Ækæ<6.32. Residuals of all regressions on log10-transformed data did not significantly differ from a normal distribution at
p = 0.01 (Anderson-Darling test [44]. CD data-set, 27 networks: n vs SD: A2 = 0.36, p = 0.5; n vs m: A2 = 0.45, p = 0.28. Cws data-set, 30 networks: n vs Sws:
A2 = 0.8, p = 0.04; n vs m: A2 = 0.82, p = 0.033). Network domains: social (,); information (); technological (#); biological (X).
doi:10.1371/journal.pone.0002051.g002
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independent of n. We therefore write Li = biln(ni), where bi is the

factor that ensures the equality to be true (i.e it plays a similar role

in this respect as ai).

This gives

ai~
Ci

biSkTilnSkTi

ð19Þ

In general, there is no a priori reason to suppose that the variables

Ci, Ækæi and bi are either all constant, or co-vary in a way

commensurate with constancy for ai. However, for the sample of

networks used here, as noted above, the mean node degree Ækæi is

approximately constant. It is now instructive to see how much co-

variation is required between the remaining two variables in order

to ensure a significantly different power law holds between S and n.

Thus, suppose that we fit a model S = mn1.5 so that we expect

ai&mn0:5
i . For the range of n encountered here – approximately

four orders of magnitude – ai would therefore have to range over 2

orders of magnitude. For this to occur, there must be sufficient

variation in Ci and bi, and these two quantities should correlate

well with n. The ranges of the two variables are reasonably large in

the data-set – using CD, 0.209#bi#2.52 and 0.005#Ci#0.72 –

and could plausibly generate the required 100-fold variation.

However, the correlation coefficients with n are very small: for bi,

r2 = 0.028 and for Ci, r2 = 0.025. This would therefore appear to

preclude a nonlinear relationship between SD and n for the

networks studied here.

To study the effect of a lack of correlation between n and

network parameters like Ci on linear scaling between SD and n, we

ran a Monte Carlo simulation (see Materials and Methods). Each

one of 1000 experiments consisted of sampling 27 randomly

drawn C values for networks with constant b, and with a spread of

n over 4 orders of magnitude. For each network its small-world-

ness was computed and a linear regression of S against n

performed. This resulted in a mean of r2 = 0.8960.06 s.d. across

the 1000 experiments, showing the strong tendency for linearity in

this case.

The linear relationship is, however, sensitive to deviations from

the approximation that Ækæ is constant. That is, networks that

deviate furthest from the linear m/n model in turn deviate furthest

from the linear S/n model (Figure 3). This was shown using a

novel regress-delete-regress procedure outlined in Materials and

Methods (we were able to directly test the sensitivity to Ækæ, rather

than using a Monte Carlo approach as above, because the strong

correlation of m with n provided a baseline from which we could

quantify deviation of Ækæ from constancy). Further, Figure 3 shows

that if we delete a random set of networks from the data-set, then

the average effect is to not change the fit to the linear S/n model:

the linear scaling is robust, and does not depend on a specific

network set.

The sensitivity of small-world-ness linearity with n to degree Ækæ
suggests that introduction of networks with very high edge density

into our sample would destroy the linear scaling. We can rewrite

(8) using Ækæ = 2m/n

SkT^jn{1, ð20Þ

and see that mean degree scales linearly with edge density. Thus, a

network with high edge density implies high mean degree, which

in turn would fall far from the linear S =an model, as we have just

shown.

One exemplar of a real system with high edge density is the

network of individual neurons within a single vertebrate brain

region. Detailed network data for these are not available because

of the great technical difficulties in reliably reconstructing even

small networks such as the 302 neuron C. Elegans nervous system

[27]. Indeed, high edge density itself may be the primary cause of

technical problems in reconstructing complete systems from many

domains, resulting in their absence from the network literature.

Nonetheless, approximate reconstructions can be attempted.

Quantitative anatomical models of individual brain regions suggest

that each of the hundreds of thousands or millions of neurons

receive many thousands of connections, and each themselves

connect to similar numbers of target neurons [16,28]. Such

networks of neurons can have very low small-world-ness values for

their size [16], and thus fall far from the linear S/n model

discovered here.

We conclude here that the linear relationship between small-

world-ness and system size does not hold for an arbitrary collection

of networks, but is highly likely if all such networks have a similar

mean node degree.

Other scaling properties of small-world-ness
Having established that S scales linearly with n, it is also

instructive to look at how its component ratios scale with n. We

find, as expected, that most networks falling into the small-world

class have approximately the same mean shortest path length as

their equivalent E–R random graphs, and so l<1. Given this, it is

unsurprising that both cD and cws then scale linearly with n (see

Figure S1). We did find that three networks in our data-set —

email messages (#7), software packages (#21), and software classes

(#22) — had l<0.1, indicating that their mean shortest path

length was an order of magnitude smaller than the equivalent E–R

Figure 3. Robustness of WS model prediction S/n. We test the
effect of real-world networks deviating from the constant Ækæ
assumption using the following iterative procedure: (i) regress n vs m
for the data-set (as in Figure 2C); (ii) select network to remove from
data-set based on regression outcome; (iii) regress n vs S for reduced
data-set and record new goodness-of-fit (as r2); (iv) repeat from (i) until
50% of networks removed. We do this for 3 selection cases, based on SD

here, in step (ii): (a) removing the network with the largest deviation
from m/n linear model increased the goodness-of-fit (#) for the S/n
linear model (the dotted line indicates the original goodness-of-fit value
at r2 = 0.78); (b) removing networks with the smallest deviation from
m/n linear model decreased the goodness-of-fit (,) for the S/n linear
model; (c) random deletion did not consistently change the goodness-
of-fit (N). Thus deviation from the assumption of constant Ækæ correlates
with deviation from the linear S/n model for the real-world networks,
as predicted by the WS model. In addition, case (c) shows that the linear
S/n model is robust to taking random sub-sets of the networks.
Identical trends were obtained for Sws. All random deletion data-points
averaged over 1000 realizations of the regress-delete-regress sequence;
both largest and smallest deviation cases were unique sequences.
doi:10.1371/journal.pone.0002051.g003
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random graph. These networks are thus ultra-small [29], and

indeed both email message (#7) and software package (#21)

networks fall further from the linear model than any others.

Given the existence of the linear scaling with n, the scaling of

small-world-ness with some other topological properties is

completely determined. We can directly determine from (20)

how edge density behaves in our data-set (values for j are given in

Table 1). Taking our fitted linear model S = an, we can substitute

n = S/a in (20) and find that

S^SkTaj{1: ð21Þ

Substituting our found values of Ækæ and a for the fits to either Sws

or SD confirms that this is a good approximation. Therefore,

because small-world-ness linearly scales with network size, and

degree is approximately constant, then S also has a simple inverse

linear scaling with edge density.

Real-world systems do not maximize small-world-ness
We can show that the specific scaling coefficient a in the

relationship S = an for the real-world networks studied here does

not maximize small-world-ness for a particular size of network.

First, we show that the WS model predicts an approximately

constant amount of rewiring p that maximizes SD, independent of

network size. To do this, given the above analytic expressions (13)

for lws and (16) for cDws (and again assuming nKp&1), we found

dSD
ws

�
dp, and set dSD

ws

�
dp~0. Solving this equality for p would

then give us the value of p that maximized SD
ws, if one existed —

see Text S1 for details of the solution.

We did this over the range n[ 103,1020
� �

with K = Ækæ/2 = 2.5,

since this is implied by the result of Figure 2C. If p* is the value of p

giving maximal SD
ws, we found that for small networks (n = 103)

p* = 0.222 and, as nR‘, p*R0.246, so that the range of p* is very

small. The constant K and very small range of p* imply that the

associated maximum SD
ws values should scale linearly with n. It

transpires that the theoretical maximum SD
ws depends almost

exactly in a linear way on n with slope 0.181 (and plotted in

Figure 2A). Thus, SD is not maximized by the real-world networks.

A generative mechanism for a specific linear S/n
relationship

We have established and explained many simple properties of

real-world networks and of their equivalence class in the WS

model. We now show how the specific, sub-maximal, linear scaling

of S = an could have been generated. The models we examine here

are intended as informative examples of the generation and limits

on S scaling, not an exhaustive list of those which could generate

the specific linear scaling we found — that remains the subject of

future work.

Many of the real-world systems share common generative

principals despite their widely differing origins. Most systems have

a growth process, showing some form of preferential attachment

[30] that is limited by the cost of adding new edges and by the

capacity to maintain them (as might be induced by aging) [31].

Simple models of this process result in ‘scale-free’ networks with

power-law or truncated power-law degree distributions [30,31], a

property that is also common to many real-world systems

considered here [32] (but see [33] for an alternative view of some

biological networks). However, networks generated by these

models are not ‘small-world’ by either Definition 1 or 2. Their

clustering coefficient is inversely proportional to n, going to zero as

n grows large [34]. Thus, they cannot show linear scaling of S: it is

at best constant and at worst goes to zero with increasing n.

A noisy, limited growth process can generate the specific linear

S =an relationships we report. A generalized form of the Klemm-

Eguiluz model (GKE)[34,35] encapsulates this process, and has

the unique property of creating networks that are both small-world

(short path length, high clustering) and ‘scale-free’ (having a

truncated power-law degree distribution) as found for many real-

world systems considered here. (To the best of our knowledge, all

known real-world systems with power-law-like degree distributions

also fall into the broad ‘small-world’ class we discussed in the

Introduction; it is only the scale-free networks formed by the

simple models that form a distinct set of ‘scale-free-only’ networks).

By using the GKE model, we therefore also show that linear

scaling of S can occur whether or not the real-world systems have

‘scale-free’ properties.

The GKE model begins with an active set of M nodes. At every

time-step a new node is added, connecting d edges: one edge

added to a random inactive node with probability r, adding noise

to the process; all remaining edges connect to randomly chosen

active nodes. One of the active nodes is deactivated with a

probability proportional to the active nodes’ degrees; finally, the

new node is activated. The sequence repeats until the desired size

of network is obtained.

We found that specific values for M and r could generate GKE

networks with the same linear scaling relationships between

network size and Sws and SD that we observed for the real-world

networks (Figure 4; see Materials and Methods, and Figure S2).

Therefore, a possible general mechanism for particular linear

scaling rates of small-world-ness is a common size of both active

node set and quantity of noise during creation of the real-world

systems.

Discussion

Small-world-ness is a topological property linking real-world

systems across domains of research. Hitherto it has been defined

only in semi-quantitative way (Definition 1). In this paper we

propose quantitative measures of small-world-ness – SD and Sws –

and define a network to be in the small-world category with

respect to either of them if the small-world-ness is greater than 1

Figure 4. A limited growth process can generate the observed
S/n relationships. We created 5 networks for every value of
n[ 500,750,1000,1500,2000½ � using a generalized form of the Klemm-
Eguiluz model (GKE) [34,35], setting d = 3 so that the resulting networks
had the same mean degree (,6) as we found for the real-world
systems. We searched on the GKE model’s M and r parameters (see
text) to minimize the root mean square error between the resulting
scaling of the averaged Sws (N) and SD (#) values and the observed real-
world network relationships (respectively, the solid and broken lines).
The best-fit parameters were different for the two forms of S,
underlining that they measure two different properties of the real
systems.
doi:10.1371/journal.pone.0002051.g004
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(e.g Definition 2). This quantification of small-world-ness allows

for the statistical testing of its presence in any given network.

The Watts-Strogatz (WS) model plays a key role in the study of

small-world networks. It uses a generative process to create classes

of small-world network and is now widely used as a model for

studying dynamic systems [3–13]. However, until now, a precise

parameterization of the WS model associated with a given kind of

real-world network remained elusive. Our introduction of a

quantitative measure of small-world-ness remedies this by

demanding that the WS counterpart to a specific network have

the same value of SD (or Sws). For the WS models it is possible to

show analytically that, under certain circumstances (constant re-

wiring parameter and range), the small-world-ness SD will scale

linearly with network size n. Intriguingly, a wide class of real-world

networks also shows this linear scaling. Given this similarity in

behavior, the assumption of (limited) topological correspondence

of the WS model with real networks implies certain constraints on

empirically measured parameters (like mean degree) of these

networks. These constraints appear to hold, and so the ideas

developed here provide further support for using the WS model in

the study of small-world systems.

We have shown that the linear scaling between SD and n is not

an inevitable property of networks; it would be possible, for

example, to include networks with very large edge density that

would destroy any linear scaling. However, in the event of linear

scaling, there is a variety of possible scaling constants and there is a

noisy growth process that could give rise to the networks sharing

the same scale (slope) parameter. Finally, we have shown that the

small-world networks used here do not maximize SD (there are

‘steeper’ linear relationships between SD and n).

We cannot, on the basis of the work presented here, answer the

question of why small-world-ness was not maximised, but we can

give some insights as to why this is the case. The possible

explanations split into two broad classes of structural and

dynamical limitations. Our use of the GKE model showed that

the limited capacity of a system’s nodes to maintain edges (whether

due to physical cost, aging processes, or some other mechanism) is

one structural limitation that could result in sub-maximal small-

world-ness. Other structural limitations could include physical

limits on node location and length of edges, such as might occur

for the sub-stations and transmission wires in the power grid

network.

Even if structural limitations were not an issue, then the system

may have dynamical requirements that prevent it from maximis-

ing small-world-ness. The constraints placed on a system’s

topology by the dynamics required to fulfill its function are not

well understood. Recent work has shown how the presence of

particular network ‘motifs’ — repeating patterns of connections

between a small number of nodes — can guarantee, for example, a

chaotic attractor for the network as a whole [36]. The functional

requirements of some real-world system may then lead to the

inclusion of particular motifs to guarantee the necessary dynamics

[37], and there is no necessary link between a system’s motifs and

its global topological properties (of which small-world-ness is but

one). Nonetheless, given that so many of the key motifs identified

so far are either complete 3-node loops or contain them [37,38],

the global topology will have a high clustering coefficient, and will

most likely be a small-world network.

Other systems may have constraints placed directly on their

global topology, and this too could prevent maximisation of

small-world-ness. For example, in his original work on the small-

world model, Watts [39] explored the dynamics of Kuramoto

oscillators on a WS model substrate, and showed that the

fraction of synchronised oscillators had a phase transition that

occurred for progressively smaller p as the oscillators’ symmetric

coupling strength increased (for fixed n, K). Therefore, if a

system’s function required it to be at the phase transition, so that

it could rapidly switch between synchronised and desynchronised

states with minimal perturbation, the required amount of

(implied) rewiring may be far from that which maximised

small-world-ness.

These are just a few of many possible explanations for why real-

world systems do not maximise small-world-ness. Instead we might

ask, when would small-world-ness be maximised? Maximum S

essentially identifies the point in the network’s possible topologies

where the highest clustering is achieved for the smallest deviation

from the shortest mean path length. Such a network would be

optimal for message-passing, such that all the nodes receive a

message in the shortest possible number of network steps [40]. On

this basis, we expect that some form of dynamic phenomenon,

whether based on percolation (or, equivalently, epidemiological

SIR models), oscillators, or some other general ordinary

differential equation system, will have a strong correlation with

small-world-ness. So, just as we have used a continuously graded

‘small-world-ness’ to quantitatively examine the topologies of the

broad class of small-world networks, we may use this as the starting

point for quantifying the continuum of dynamic properties that

must also span this class.

Materials and Methods

Data-set of real-world systems
We collated a database of real-world networks’ topological

properties, combining published results with our own analyses of

available data-sets. These are presented in Table 1, extending the

previous considerable effort of collating topological properties by

Mark Newman [1]. All networks are treated as undirected. We list

33 real-world systems in total: we could compute Sws for all systems

and SD for 27 systems — CD could not be found or computed for

those systems.

We emphasise that the networks were not chosen for their ability

to fit the linear model of S/n. The majority of the data-set (21 of 33)

were obtained from a previous collation [1]: networks were only

omitted from that prior data-set if neither Cws or CD were available

for them (and hence were of no practical use to us here). Many of the

additional networks we added filled sub-domains missing from the

prior data-set, for example: the dolphin network [41] is an example

of an animal social network; the cortical area connectivity map [42]

is an example of large-scale neural connectivity. In addition, the

regress-delete-regress sequence we used in the main text (and see

below) shows two properties. First, that we could have applied that

method to the data-set in Table 1 before further analysis, pruning the

data-set down to those networks that showed the best fit to the linear

model (by choosing the ‘most-deviant’ networks to omit), but did not.

Second, that the linear scaling property is robust across randomly

chosen sub-sets of the network data-set: on average, randomly

deleting networks from the data-set did not significantly reduce the fit

to the linear model.

Testing significance of S scores
We assess the significance of borderline small-world-ness

scores S1 using Monte Carlo methods. The null hypothesis for

the Watts-Strogatz definition of small-world networks is that the

system is an Erdös-Rényi (E–R) random graph. We thus

constructed N = 1000 E–R networks with the same number of

nodes n and edges m for each tested real-world system,

computing SD
i and Sws

i for the ith E–R network. The 99%

confidence limits for the null hypothesis were then defined for
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each system. We first found the central 99% interval [a*, b*],

that is [43]

# SD
i va�

� �
N

~0:005,
# SD

i vb�
� �

N
~0:995, ð22Þ

and similarly for Sws. The 99% confidence interval for the system

is then

CI~
b�{a�

2
: ð23Þ

The upper 99% confidence limit is then CL0.01 = 1 + CI (where

by definition Sws, SD = 1 for an E–R random graph). A network

with S.CL0.01 was therefore considered to significantly differ

from a random network. We note that adopting a quantitative

definition (Definition 2) of small-world-ness has led us to a

procedure for a general statistical test for the presence of small-

world structure, as defined by Watts and Strogatz [3], which is

particularly useful for establishing meaningful departures from

randomness in small networks.

Fits to linear scaling
Least-squares regressions on small-world-ness S and number

of edges m against size of system n were performed on log10-

transformed data to normalize magnitude of errors across range

of n. Best fit linear model log10(x) = a+blog10(n) back-transformed

to a linear basis, giving x = anb, where a= 10a and b= b.

MATLAB (Mathworks) function regress was used to perform

the regressions. The validity of r2 significance values was

established by confirming that the residuals of each regression

had a normal distribution at p = 0.01 using the Anderson-Darling

test [44].

A regress-delete-regress procedure for testing
robustness of predictions

We test the effect of real-world networks deviating from the

constant Ækæ assumption using the following iterative procedure:

1. regress n vs m for the data-set (as in Figure 2B);

2. select network to remove from data-set based on regression

outcome (3 different selection criteria were used, detailed

below);

3. regress n vs S for reduced data-set and record new goodness-of-

fit (as r2);

4. repeat from step 1 until 50% of networks removed.

We do this for 3 selection cases in step 2. First, we tested

removing the network with the largest deviation from m/n linear

model in each iteration, hypothesizing that this should lead to an

overall increase in fit to a linear model (increased r2) for S = f(n) if

the WS model behaviour reflected that of real-world systems.

Second, we tested removing the network with the smallest

deviation from m/n linear model at each iteration, hypothesizing

that this should lead to an overall decrease in fit to a linear model

(decreased r2) for S = f(n) if the WS model behaviour reflected that

of real-world systems. Third, we tested random deletion, where a

random network was deleted at each iteration, irrespective of the

regression outcome, to establish the baseline effect of removing

systems from the data-set. The first and second cases are unique

sequences of deleted networks; the third case we repeated 1000

times.

Monte Carlo testing of linear scaling
We tested the dominance of linear S/n scaling given an

approximately constant mean node degree Ækæ and path length

scaling b. For each Monte Carlo simulation, we drew 27 random

C values from a uniform distribution in [0,1], computing ai for

each from Eq. (19) with constant bi = 1 and Ækæi = 6. We then

computed Si = aini for each, using a logarithmic spread of 27

network sizes n[ 102,106
� �

to closely match the spread of the real-

world system sizes. Linear regression (as detailed above, including

the log10-transform) was then performed on the set of simulated 27

S values and the r2 recorded. We repeated this procedure 1000

times.

Searching GKE model parameter space
We wished to determine if the generalized Klemm-Eguiluz

model (GKE)[31,32] model could explain the particular scaling

relationships we found for the real-world systems:

SD~0:023n0:96, ð24Þ

Sws~0:012n1:11: ð25Þ

We explored the (M, r) parameter space, searching over

M[ 3,30½ � in steps of 1, and r[ 0,0:5½ � in steps of 0.1. The lower

limit on M is set by the number of edges added per new vertex,

and here we set d = 3 to give a mean degree of Ækæ<6 for a GKE

model network, approximately the same degree that was implied

by the linear m/n relationship for the real-world systems. For each

(M, r) pair, we constructed 5 GKE model networks for each value

of n[ 500,750,1000,1500,2000½ � and computed their Sws and SD

scores. We took the mean of these 5 scores for each n, giving sets

�SSws
500,�SSws

750,�SSws
1000,�SSws

1500,�SSws
2000

� �
and �SSD

500,�SSD
750,�SSD

1000,�SSD
1500,�SSD

2000

� �
.

The fit of the GKE model networks was then assessed by

computing the root mean square error (RMSE) between these

mean values and those given by the scaling relationships (24) and

(25) for the tested sizes of network n. The parameters that

minimised RMSE are given in Figure 4; the error landscapes are

shown in Figure S2.

Supporting Information

Text S1 Supporting information text

Found at: doi:10.1371/journal.pone.0002051.s001 (0.22 MB

PDF)

Figure S1 Correlation of real-world systems’ clustering coeffi-

cient and path length ratios with system size. Clustering coefficient

ratios (a) cD = CDCrand and (b) cws = CwsCrand both scaled linearly

with S. Linear regressions found r2>0.86 in both cases. (c) As

expected for small-world-networks, path length L was approxi-

mately the same as that of an E-R random graph, and so l= L/

Lrand1 for most networks (note that we show l here for all 33

networks). All linear regressions performed on log10-transformed

data, as detailed in Materials and Methods of the main text.

Found at: doi:10.1371/journal.pone.0002051.s002 (0.11 MB TIF)

Figure S2 The root mean square error (RMSE) distribution

across tested values of the GKE model parameters. The RMSE is

computed based on the difference between the mean values of

small-world-ness for a set of generated GKE networks and the

corresponding small-world-ness values from the specific linear

relationships found for the real-world systems. (a) RMSE error
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distribution for the fit to the Sws/n relationship. RMSE plotted on

log scale to emphasise valley of minimum values. Stick-and-ball

indicates the parameter pair that minimised RMSE. (b) RMSE

error distribution for the fit to the SD/n relationship. Stick-and-

ball indicates the parameter pair that minimised RMSE.

Found at: doi:10.1371/journal.pone.0002051.s003 (0.44 MB TIF)
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